
Browser Exploitation
Framework

BeEF?

www.beefproject.com

WTFlip is
Browser Hacking??

..and the importance of client-side
testing

An intimate look at JavaScript with
Christian Frichot

Who

• App Sec Nerd @ LinkedIn

• BeEF Developer

• Security Fun Guy

• Drummer

• Nunchuck skills

@CactusCon @xntrik

The opinions of this presentation are my own and don’t reflect my employer.

@CactusCon @xntrik

And a co-author of the Browser Hacker’s Handbook. Released in 2014, a number of the concepts discussed here are from our book.

The Browser Hacker’s Handbook focuses on various attacks that can occur once an attacker has control of the DOM, or other contexts within the browser,
such as plugins.

You can grab the book from Amazon here: http://a.co/jbruw7E

@antisnatchor
(hates pants)
@wadealcorn
(likes pants)

The other co-authors ;)

What

@CactusCon @xntrik

This talk is mainly about Browsers, JavaScript and the Browser Exploitation Framework. Focused on the following themes:

Browser is the OS

@CactusCon @xntrik

especially of our current generations.

A Browser Hacker’s
Methodology

@CactusCon @xntrik

A browser-based client-side security testing methodology

Browser Hacks

@CactusCon @xntrik

A summary of attacks, and just how bad it can get if malicious logic gets inside your browsers.. I’m really keen to move beyond an alert popup box if
you’ve discovered an XSS - if you ever need to demonstrate how bad client-side injection is, you should definitely be looking at tools like BeEF.

How we live

@CactusCon @xntrik

The Internet, and browser’s are EVERYWHERE. You’ve got n+1 on your phone, tablet and computer. Let alone your work computers etc etc. Each browser
establishes a context with each and every site, offering effectively infinite combinations of interactions.

HTML, JavaScript and other browser-tech is deeply embedded in how we live, and is NOT disappearing.

Subtle Complexity

@CactusCon @xntrik

Take Chrome for example. Looks very simple, but is exceptionally complex.

How would you
risk assess me?

@CactusCon @xntrik

If you tried to perform a traditional information risk assessment on a ‘web browser’, if it was something you hadn’t seen on your network before, you’d
likely be concerned. It can access the Internet, while simultaneously accessing your Intranet, and is the primary platform to access everything.

Thanks a lot,

@CactusCon @xntrik

Thanks a lot,

• JavaScript

• Asynchronous Web (AJAX(/JSON))

• HTML5

• JS MVC Frameworks (Angular, Ember, React etc)

• Phonegap

• Node.js (close to the \m/)

• ASM.js
@CactusCon @xntrik

https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
Unreal engine in FF 250KLOC of C -> Compiled to asm.js -> Running in browser.

End of life...

@CactusCon @xntrik

But not all browser technology is destined to work for ever, particularly those that give lower-level permissions. For example..

End of life...

• Flash

• Silverlight

• Java Applets

@CactusCon @xntrik

Non-native..
FF, native java, then applets, then self-signed, then formally signed, then CtP

Instead..

@CactusCon @xntrik

HTML5 APIs

@CactusCon @xntrik

WebSocket Protocol

@CactusCon @xntrik

WebWorkers

@CactusCon @xntrik

WebRTC

@CactusCon @xntrik

NaCl

@CactusCon @xntrik

Google’s Native Client - to overcome the slowness of JavaScript.

Portable NaCl, or PNaCl (pronounced pinnacle) allows developers to compile into bitcode, which is then translated to host-specific executable when it’s run
in Chrome.

@CactusCon @xntrik

WebAssembly

@CactusCon @xntrik

https://medium.com/javascript-scene/what-is-webassembly-the-dawn-of-a-new-era-61256ec5a8f6#.xlr0wafv0

https://github.com/WebAssembly/design/blob/master/HighLevelGoals.md

Browser IS the OS

@CactusCon @xntrik

Client-side testing?

@CactusCon @xntrik

What is client-side testing? As opposed to traditional vulnerability assessments or penetration tests, client-side tests focus on your endpoints.

Perimeters
getting

stronger

@CactusCon @xntrik

Edge controls are getting better (?). Web apps are in some instances getting more resilient. This may be to do with the constant barrage of attacks against
web apps as soon as they’re online. Modern web dev frameworks are also better at providing secure-by-default options.

Your precious cheese
isn’t always exposed to

the Internet

@CactusCon @xntrik

Enterprises and corporates, regardless of the grown of SaaS and cloud offerings, are still often running their sensitive systems on the intranet, or other
internal systems.

You think attackers just
target your apps?

@CactusCon @xntrik

It’s also realistic, drive-by downloads, xss scripting, social engineering attacks - y

What about your
people?

@CactusCon @xntrik

Benefits

• Expand and accurately measure the
attack surface

• Properly consider the changing perimeter
environment

• Realistic (You think real attackers aren’t
after your internal workstations and
staff?)

@CactusCon @xntrik

Difficulties

• Not as well understood by testers

• Not as well understood by clients

• Discomfort related to Social Engineering
related assessments

@CactusCon @xntrik

Effectiveness

@CactusCon @xntrik

@CactusCon @xntrik

In the Browser Hacker’s Handbook we’ve broken down the chapters to follow a simple methodology for attacking browsers.

BeEF

@CactusCon @xntrik

So, in the context of browser attacking, I’m primarily talking about the Browser Exploitation Framework.

Phase 1
Hooking

@CactusCon @xntrik

Step 1 .. it’s always hooking.. we use this term to combine the concepts of initiating and maintaining control.

XSS

@CactusCon @xntrik

This is what BeEF was originally developed for.

Pwning Web Sites/Apps

@CactusCon @xntrik

Malicious Ads

@CactusCon @xntrik

MitM

@CactusCon @xntrik

Social Engineering

@CactusCon @xntrik

@CactusCon @xntrik

The social engineering component, and leveraging browsers is one of my favourite aspects of these attacks, and not surprising, the recent Verizon Data
Breach Investigation Report also highlighted the growth of the attack vector.

@CactusCon @xntrikAttribution: the internet?

Initiating Control ✓

@CactusCon @xntrik

Maintaining Control

@CactusCon @xntrik

After the initial execution of your code, it helps to continue maintaining the channel...
Maintaining control includes the communications between a browser and your attacking server (think of a botnet, or command & control environment), and
also persistence - how do you keep browser’s under your control even in the face of user actions, such as clicking away?

Some attacks need time

@CactusCon @xntrik

Port Scanning

@CactusCon @xntrik

Fingerprinting

@CactusCon @xntrik

IPC & IPE

@CactusCon @xntrik

Inter-protocol Communication and Exploitation

Phase 2 - Comms

@CactusCon @xntrik

• XMLHttpRequest

• WebSockets

• WebRTC

• DNS Tunnelling

@CactusCon @xntrik

Phase 3 - Persistence

@CactusCon @xntrik

• IFrames

• Handling browser close events

• MitB trickery

• Malicious Extensions

@CactusCon @xntrik

At this point your browser is hooked... and talking back to you. Now, if you’re wondering how likely this is to get through your enterprise controls? Don’t
forget, all of these technologies, even to some degree WebSockets, are all native web traffic. This is NOT odd or malicious looking traffic.

@asteriskinfosec @xntrik

This is what BeEF looks
like

@CactusCon @xntrik

<magic>

@CactusCon @xntrik

https://youtu.be/1CXYYjzvIdM

Passive Attacks..

@CactusCon @xntrik

What about Active
attacks?

@CactusCon @xntrik

<boom>

https://youtu.be/8D27fAS9HMk

Browser
Hacking

@CactusCon @xntrik

Attack Classes

• Users

• Browsers

• Extensions

• Plugins

• Apps

• Networks (IPC/IPE)
@CactusCon @xntrik

Issues Highlighted

@CactusCon @xntrik

Browsers have access
through multiple

channels

@CactusCon @xntrik

Browsers have access
to many systems

@CactusCon @xntrik

The web, and modern
web technologies,

demand A LOT from
browsers

@CactusCon @xntrik

So what can we do?

@CactusCon @xntrik

DRINK UP

@CactusCon @xntrik

Monitor

@CactusCon @xntrik

Bolster your IR

@CactusCon @xntrik

TEST your IR

@CactusCon @xntrik

Emulate these attack
scenarios

@CactusCon @xntrik

Don’t rely on
technology alone

@CactusCon @xntrik

Especially for incident response.. get your security guys and dev guys playing with this. If they haven’t had an opportunity to play with BeEF or Metasploit,
now is the time.

We’re getting better at
managing XSS (sorta)

@CactusCon @xntrik

Content Security
Policy!

@CactusCon @xntrik

(If) implemented
properly, can make
injecting arbitrary

content more difficult

@CactusCon @xntrik

Content-Security-Policy:
 script-src 'self' https://
 apis.google.com

@CactusCon @xntrik

There are a few gotchas with CSP, in particular, if trying to retrofit the configuration over an existing JavaScript heavy site. For example, it works better if
all your JavaScript logic is defined in external files which you can then ‘allow’, if you have a lot of inline JavaScript then it’s a bit more complex and may not
work as effectively.

Thanks

• @WadeAlcorn

• @Antisnatchor

• @BeefProject

• ALL THE BeEF DEVS

• LinkedIn Assessment
Crew

• Team Asterisk (Perth /
Australia’s radical sec
team)

@CactusCon @xntrik

